

GeoBrain A Web Service Based Geospatial Knowledge Building System

Liping Di
Laboratory for Advanced Information Technology and
Standards (LAITS)
George Mason University
9801 Greenbelt Road, Suite 316-317
Lanham, MD 20706, USA
ldi@gmu.edu

NASA EOS Higher-Education Alliance: Mobilization of NASA EOS Data and Information Through Web Services and Knowledge Management Technologies for Higher-Education Teaching and Research

ESE Information Systems Vision for 2015

(From the capability vision workshop summary)

From ESE Strategy (Oct 2003)

- "Advanced information systems to enable the processing, communicating, and archiving of vast amounts of data generated by the envisioned networks of sensorcrafts, and to deliver on-demand and affordably Earth system information products to customers located anywhere and at anytime."

Working Vision

- Near-real-time, transparent, seamless, and automatic...
- data fusion, data analysis, and knowledge discovery...
- from petabytes of data acquired from multiple sources...
- to enable and accelerate progress toward ESE goals for scientific research, applications, and education.

The Objectives of the Research

- To enable the students and faculty of higher-education institutes easily accessing, analyzing, and modeling with the huge volume of NASA EOSDIS data for teaching and research just like they possess such vast resources locally at their desktops.
 - Enable the education users to handle vast NASA EOS data and computing resources like their local ones.
 - Develop/enhance courses that fully utilize the environment for Earth System Science/Geospatial education
- To realize this goal, we will develop an open, standard-based interoperable web geospatial information system called GeoBrain and operate it on top of NASA EOSDIS on-line data resources
 - Develop geospatial web service and knowledge management technologies for NASA EOS data environment.
 - Implement them in an open, standard-based, distributed, interoperable web service system.
 - It is a geospatial modeling and knowledge building system

Process of Learning and Knowledge Discovery in Data-Intensive ESS

- 1. Find a real-world problem to solve
- 2. Develop/modify a hypothesis/model
- 3. Implement the model/develop analysis procedure at computer systems.
- 4. Determine the data requirements and search, find, and order the data from data providers.
- 5. Preprocess the data into the ready-to-analysis form
 - reprojection, reformating, subsetting, subsampling, geometric/radiometric correction, etc.
- 6. Execute the model/analysis procedure to obtain the results.
- 7. Analyze and validate the results
- 8. Repeat steps 2-7 until the problem is solved.

ESS Data Available at NASA

- The NASA Earth Observing System (EOS) collects more than 2Tb of remote sensing data/ day.
- Currently NASA Active Archive Data Centers (DAACs)
 have archived multiple peta bytes of data from EOS and
 pre-EOS era.
 - Significant part of the data archives have never been analyzed once.
- All of those data are free to all data users.

NASA ESS Data Environment

- The EOS data and information system (EOSDIS) is designed to manage, archive, analyze, and distribute the ESS data.
 - Originally designed for supporting NASA funded scientists.
 - Based on technologies of 20 years ago.
 - Mainly for supporting well-funded NASA ESS research projects
 - Not considering the small data users and educators.
- The standard data format in EOSDIS is HDF-EOS.
- EOSDIS distributes data in granules, which may cover large geographic regions.
- No data services provided.
- Technology insertion continues to improve EOSDIS

Problems in Data-intensive ESSE

- Difficulty to access the huge volume of EOS data.
 - Take weeks to order and obtain a large volume of EOS data.
- Difficulty to use the data.
 - Significant time, resources, and data/IT knowledge are required for preprocessing the multi-source data into a ready-to-analyze form.
 - The ESSE faculty normally does not have enough knowledge in the data/IT knowledge.
- Lack of enough resources to analyze the data.
 - Few universities have the hardware/software resources to handle multi-terabytes of data in simulation and modeling for solving global-scale problems.

Use case: Landslide Model – Risk Assessment and Management

Static Data

- Geology base maps
- Soil type and properties
- Terrain/DEM
- Past earthquake frequencies

Use case: Landslide Model – Risk Assessment and Management

Dynamic data

- Land cover map
- Soil moisture (wetness)
- Hydrology
- Precipitation
- Hurricane condition
- Disturbance (construction sites, etc)

Use case: Landslide Model – Risk Assessment and Management (cont.)

Landslide risk modeling:

- Binary method (1 * 1 * 0 * 0...)
- Ranking (1+0+1+0+...)
- Rating method (4+7+3+...)
- Weighted rating (4*2+7*1+3*1+...)
- Other models: R=f(x1,x2,...)

Use case: Landslide Model – Risk Assessment and Management (cont.)

- Stability index map
- Potentially unstable zones
- Informed stability management
- Potential damage
 - Transportation
 - Business/Industrial/etc infrastructures
 - Residential
 - Lakes/Reservoirs/river networks
 - Environmental
 - Ecological/biodiversity
- Potential damage assessment
- Potential damage management

Use case: Landslide Model – Risk Assessment and Management (cont.)

Characteristics of the study:

- Dynamic in nature
- Quick assessment and response essential
- Distributed data sources
- Significantly different data types
- Heterogeneous data formats
- Tremendous data preprocessing
- Model being either simple or complicated
- Chains of data/services involved

Expected Significances

- The GeoBrain system will give ESSE institutes a geospatial datarich learning and research environment that was never available to them before.
- The environment will enable students interactively, through their desktop computers, explore answers to the scientific questions by mining the peta-bytes of EOSDIS data.
- The technology also provides the interactive collaboration among students worldwide on scientific modeling, knowledge exchanges, and scientific criticism.
- Such an environment will inspire students' curiosity on sciences and enable faculties and students doing many new studies that could not be done before.
- It will also provide educators with unique teaching tools and compelling teaching experiences that they never have experienced and that only NASA can offer.

Virtual datasets

- A virtual dataset is a dataset that:
 - Does not exist in a data and information system
 - The system knows how to create it on-demand.
 - A virtual dataset, once created, can be kept for fulfilling the same request from next users.
- The client/data user will not know the difference between a real dataset and a virtual dataset.
- A virtual dataset can be produced (materialized) by
 - running a computer program dedicated to the production of the virtual dataset (dedicated program approach).
 - running a series of service modules, each one takes care of a small step of the materialization of the virtual dataset (service approach).

Geo-object, Geo-tree, Virtual Dataset, Geospatial Models

George Mason University

From Geospatial model to user geo-object

George Mason University

Knowledge capture: the construction of geospatial models

- Two catalogs are essential
 - geo-object types
 - service types
- Save the model in a formal way
 - Use the modified/simplified BPEL to store the geo-tree
 - Keep geo-trees in the geo-tree library
 - Catalog the geo-trees in the geo-object catalog.
- Two ways to create geospatial models
 - Domain experts create models and share with others.
 - Easy to construct a model through a graphic model construction client.
 - Automatically creation of model.
 - Require the system to have domain knowledge and Al capabilities

User Creation of Geospatial Models

- A user-requested geo-object may not exist either virtually and nor physically.
- If the user knows the process to create the geo-object from lower-level inputs step-by-step (the logical geospatial modeling)
 - With help of a good user interface and the availability of service modules and models/submodels, the user can construct a geospatial model/virtual data product interactively.
 - The system then can produce the virtual data product for the user.
 - The user-created model can be incorporated into the system as a part of the virtual datasets the system can provide.
- This allows the system to grow capabilities with time.
- Advantages
 - allows users to obtain the ready-to-use scientific information instead of the raw data, significantly reducing the data traffic between the users and the geospatial Grid.
 - allows users to explore huge resources available at a data Grid and to conduct tasks that they never be able to conduct before.

Automatic Creation of Geospatial Model

- We are studying the approach to automatically create geospatial process models based on user's description on user-geo-object and produce the user geo-object.
 - In many cases, a model used to generate user requested geoobject does not exist and the user is not an expert user knowing how to create a model.
 - The automatic creation will allow the general users to obtain geospatial information and knowledge
- The steps are as following:
 - Users express their request in nature language (ideally) or in controlled vocabularies.
 - The request is converted to a user geo-object.
 - The user geo-object is abstracted to become a user geo-object type.
 - Deductive method is used to form the geo-tree from the user geoobject type with the help of geospatial ontology.
 - The rests are the same as the other modeling approaches.

From Geo-object to virtual user geo-object

- The root node of a geo-tree is a virtual geo-object type
- When user/client requests a geo-object, user will provide a description of the geo-object they want;
- If the type of the user geo-object matches with virtual geoobject type in a geo-tree,
 - The geo-tree is selected;
 - The root node is instantiated with the descriptions provided by the clients.
 - The root node now becomes a virtual user geo-object.
- The next step is to determine if the virtual user-geo-object can be materialized on the fly.

Logical Instantiation of Geo-Tree

- Check if a virtual user geo-object can be materialized by instantiating the whole geo-tree.
 - Push the description of the virtual user geo-object down to each node of geo-tree (e.g., spatial coverage, format, etc);
 - Discover instance of service and geo-objects through searching both service instance catalog and geo-object instance catalog;
 - If an archive geo-object is found as the input of a process, then the push down will be stop for the branch of this tree.
- The logical instantiation will not create an actual workflow, but conceptually, it creates a logical workflow.
- If a geo-tree can be instantiated logically, the virtual user geoobject can be materialized.
 - A logical ID will be created and return to client to indicate the userrequested geo-object is found in the system.
 - The logical ID will be used by the client/user to request for the geoobject.

Physical Instantiation of Geo-Tree

- When client requests a user geo-object, the geo-object ID will indicate if the user geo-object is virtual.
- If the geo-object is virtual, the geo-tree associated with the virtual geo-object will be instantiated to create a concrete workflow.
 - A workflow language will be used to encode the workflow.
 - The workflow is executable in a workflow execution engine.

Creation of user geo-object

- The workflow engine will execute the workflow and generate the user geo-object.
- The user geo-object will be return to user/client.
- The above mentioned steps reflects two stage processes:
 - User query
 - User retrieve
- The two stages can also be merged into one stage process that when a user query can meet, the resulted user-object will be pushed back to user automatically without user initiation of the retrieval.

The Infrastructure Foundation

- NASA ESE is working on putting ESS data at DAACs on-line for rapid access through data pools
 - Most commonly requested and most recently acquired data currently.
 - 4 DAACs have data pools online already.
 - Eventually all data will be on-line.
- NASA ESE has excellent network infrastructure for data traffic
 - In most cases, 1Gb/second links between NASA DAACs/research centers.
- NASA ESE has huge computational resources.
- Make the vast data and computational resources available and easily accessible to ESSE institutions

The Technology Foundation

- The web-based geospatial interoperability technology.
 - Standards developed by FGDC, ISO, and OGC.
 - The common interfaces to data archives of different data providers for obtaining personalized ready-to-analyze dataset.
- The web service technology
 - The fundamental technology for E-commence.
 - Web Services are self-contained, self-describing, modular applications that can be published, located, and dynamically invoked across the Web.
 - Automatically and dynamically chaining individual services and connecting services to data for solving complex problems are the goal of semantic web.
- Grid technology
 - Securely share the geographically distributed data and computational resources.

System requirement at the user-side

- Any internet connected PC capable of running JAVA client of the system.
 - The client will be provided to any users for free.
- No fast network connection is required
 - all data reduction is done by the system at computers that users don't need to know.
 - Users only get the result back instead of all raw data.
- No powerful computer with large disk storage capability is needed
 - Basically the users possess the huge computational and data resources that the system can mobilize.
- No expensive analysis software is needed
 - Analysis and modeling capabilities are provided by the system

System built by ESSE community for the community

- The GeoBrain system will be built by the ESS highereducation community for the community.
- The major tasks of system development will be:
 - Development of service framework that allows the automated execution of services and service chains.
 - Development of services modules and geospatial models.
- Any individuals can contribute both modules and models.
- A peer-review panel will be set up to review and validate the modules and models contributed by the community.

Involvement of ESSE Community

- As the users of the system.
 - Provide the requirements
 - Evaluate the systems
 - Develop new curriculums and research around the newly available capabilities.
- Participate in the system development
 - Develop individual service modules
 - Contribute the geospatial modules

Evolution and Self-enhancement of the System

- Beside the computational and network capacity and the data holdings in various distributed archives, the power of the system relies on the availability of the service modules and geospatial models.
- With more and more contributions of modules and models from the user community, the system will become more and more powerful and knowledgeable.
- The inclusions of the modules and models into the system will be subjected to rigorous peer review and testing.

Sharing Technology with other REASoN Teams

George Mason University

- Technology available to other teams
 - OGC interoperable data access technology
 - WCS server
 - WMS server
 - WRS/Catalog server
 - Multiple-protocol Geoinformation Client
 - HDF-FOS/GIS translators
 - Technical support on geospatial standards and specifications
- Joint technology development
 - Dynamic model composition through decomposition (implementation of the geotree concept)
 - Workflow management and executions
 - Interoperability of geospatial processes
 - Geospatial web service technology
- Availability of OGC compliant data access and services
 - Serve EOS data using OGC protocols.
 - Can be used in testbeds to test interoperability.

The Team

Development Team

- George Mason University
- City University of New York
- Northern Illinois University
- University of Texas Dallas

Education partners

- In the first three years of the project, three education partners will be selected in each year through a RFP process (Total 9 partners).
- Each partner will be provided two years of funds to develop new/enhanced courses based the capabilities, promote the use of the system in the peers, and provide feedback to the development team.
- Any higher-education professors and students are welcomed to use the system and participate in the development.

